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Laminated structures, like an electric stator package, exhibit orthotropic behaviour and high levels of internal damping due to the inter-laminar friction forces.
Modelling the complex geometry, number of laminae, spatial pressure distribution, and the effects of welds on the dynamic response of laminated structure
remains a challenging issue. The presence of welds, that serve as a physical connection between laminae, results in non-uniform pressure distribution
between laminae. Usually orthotropic material properties are proposed to account for lower stiffness in the sheet stacking direction. These models assume
uniform distribution of friction forces and may even lead to occurrence of additional, unrealistic mode shapes. In this paper the dynamics model of the
electric machine stator is proposed that employs a new contact formulation using beam elements, characterized by stiffness and damping parameters in
the tangential direction and nonlinear contact stiffness in the normal contact direction. The welds and the welding process itself are represented using
spring-thermo elasto-plastic bar model. As the contact model assumes nonuniform pressure distribution it is possible to include the effect of residual stresses
that occur after the welding process. The validity of developed numerical model is demonstrated by comparing numerically and experimentally obtained
eigenfrequencies and modes for three different stator packets that differ in geometry, position and the number of welds.
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Highlights
• Laminated structures are significantly more flexible as their solid counterparts and are often welded to preserve shape.
• Welding process affects the pressure distribution between the laminae, which greatly affects its dynamic behaviour.
• A two stage model is presented for modelling steel laminated structures, which determines the contact parameters based on the

pressure distribution between the laminae.
• Experimental modal analysis was used to validate the model.

0 INTRODUCTION

In order to reduce Eddy currents and consequently
heat losses, the magnetic cores in electrical devices
are usually made of large number of thin metal
sheets. These sheets are stacked together and are
often line welded in order to preserve shape. The
magnetostriction and magetic forces are a phenomena
accompanying the magnetisation process and present
a problem in terms of vibrations. The intensity
of vibrations depends on the dynamic properties of
the structure and the magnitude of the excitation
phenomena. By optimizing the design of the laminated
structure, the resonant frequencies can be avoided.

In order to predict the dynamic response
of such structures a valid structural model must
be developed, including an effective and reliable
model of a contact-dependent structure, with friction
between the laminae. Laminated structures are
usually substantially more flexible than the equivalent
homogeneous structures [1] and [2], and exhibit
orthotropic behavior and high levels of internal
damping due to the interlaminar friction forces [3] and
[4]. The numerical model of a laminated structure

has to account for the pressure distribution between
laminae, as it influences the stiffness distribution
within the structure [4] to [6]. The authors of [6]
observed a significant increase of the eigenfrequencies
even for small increases of the pressure between
the laminae. Some analytical models also exist
for the estimation of modal parameters of a stator
packet [7] and [8]; however, they fail to take
the frictional contact between the laminae into
account. An efficient contact model in the field
of multibody dynamics was presented in [9], which
separates between the normal and tangential influences
of contact parameters on a highly flexible body.
Laminated structures are also commonly modelled
using orthotropic material properties [10], [11] and
[12] that are obtained experimentally, by measuring a
real structure and consequently updating the numerical
model. Simplified models are used in order to
reduce the complexity, number of components in the
analysis, number of details and number of degrees
of freedom. Many of these models were developed
for the modelling of composite structures. These
methods are commonly referred to as homogenisation
methods [12]. Some of the methods employ
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simplifying the laminated structure by determining
equivalent homogeneous material properties [13] and
[14]. A more sophisticated analytical solution
was proposed in [15] for determining the laminated
structure’s equivalent elasticity matrix. The paper [16]
describes the Reissner- Mindlin model for numerical
homogenisation of orthotropic structures. A very
thorough review of these homogenisation methods is
presented in [17].

Modelling of the structure using the orthotropic
material properties is performed by modifying
the shear and elastic moduli of the equivalent
homogeneous structure. The obtained material
parameters are applicable to the specific laminated
structure and assume a uniform pressure distribution
and friction forces between the lamina. Thus,
each modification regarding the geometry, number of
laminae, number and position of welds, etc. has to be
evaluated experimentally and then the valid numerical
model can be created. Moreover, the introduction of
orthotropic material properties can also lead to the
occurrence of additional unrealistic mode shapes [4].
The usage of orthotropic material properties in the case
of cylindrically symmetric structures also means that
the modes occur in pairs, at similar frequencies. This
is, however, not necessarily the case when dealing with
welded laminated structures, as shown in this paper
using the extended linear contact model.

Just recently, the authors of [4] developed a
new general numerical model of laminated structures
that accounts for the non-uniform distribution of
inter-laminar friction forces. This numerical model
employs contact elements characterized by stiffness
and damping parameters in a tangential contact
direction and non-linear contact stiffness in the
normal contact direction. The algorithm for
modelling of a contact using beam elements made it
possible to accurately predict the eigenfrequencies and
mode shapes for various configurations of clamped
laminated stacks. In this paper the model presented in
[4] is extended in order to predict the modal parameters
of welded electrical stator packages.

The originally proposed algorithm for modelling
a contact-dependent structure in [4] was used to
model simple cubic laminated stacks without welds.
Here, the developed model is general and may
be applicable to geometrically complex laminated
structures, e.g., electrical stators. As the contact model
was thoroughly tested in [4], where the influence of
stack height, surface treatment of the laminae and steel
types were analysed on 18 different configurations
of the packages. Therefore, only the influence of

non-uniform contact pressure distribution is of interest
in the experimental analysis in this paper.

Effect of welds is additionally introduced into the
laminated structure model as the stators are commonly
line welded to preserve stack geometry. The welds
serve as a physical connection between laminae and
due to residual stresses influence the inter laminar
pressure distribution within stator packet. Residual
stresses result in a force, that influence the frictional
conditions between the laminae. Analytical methods
to deduce the residual stresses usually follow the
calculation of heat flow and thermal expansion [18],
where material properties are temperature dependent
[19]. Some authors model the heat flow and thermal
expansion through the continuous material using 3D
[20] or simplified with 1D finite elements [21].
Here the weld and the welding process itself was
modeled by spring-thermo-elasto-plastic bar model
[22]. To introduce the weld model into the laminated
structures the formulation presented in [22] had
to be additionally extended in order to enable the
implementation of the model in a finite element
environment. To validate the developed model of
laminated structures several stator packets that differ
in geometry, number of laminae and position of welds
were experimentally analysed.

The article is organised as follows. The second
section presents the development of the numerical
model, its application to the complex geometry of a
stator packet and the modelling of the welds. In third
section, the experimental procedure is presented. The
fourth section presents results and the validation of the
model based on the three different stator packets.

1 NUMERICAL MODEL

Laminated structures are usually modelled using
the orthotropic material properties, which implies
that the shear and tension-compression modulus are
independent. Here the contact description between two
adjacent laminae is based on two stage linear contact
model as it is presented in [4]. In the first stage
the link elements are spanned between laminae and
pressure distribution is deduced. In the second stage
the link elements are replaced with beam elements
(Fig. 1). A linear relation is assumed between the
computed pressure distribution and the beam shear
modulus G f in order to model the effect of the friction
forces and the sliding. In the first stage the lamina
surface pressure distribution is computed using static
analysis based on known clamping pressure. In this
paper the first stage of the contact formulation is
extended to account for the influence of the welding
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a)

b)

Fig. 1. Linear contact model [4]; a) first stage, b) second stage

process on the pressure distribution between laminae.
The application of the proposed dynamic model of a
contact using beam/link finite elements to the stator
packet is presented in Fig. 2. Finite elements on
the laminae are of different sizes and shapes. As
the contact parameters are proportional to the size
of a finite element, the geometry of each individual
element had to be identified. This was not required in
[4] as the authors applied the model only on simple
geometry, which was meshed with an equally sized
rectangular finite elements. The deformation pattern
of applied beam finite elements used for modelling
the contact conditions between the laminae consist
of flexural, shear and axial deformations. Only the
shear and compressional deformations are taken into
account in the contact model. The shear deformation,
that describes the frictional contact between laminae,
is assumed to be linear. Linearisation enables the
application of implicit methods in the framework of
linear dynamics.

Beam finite elements were proposed to model
the contact elements and shell elements to model the
laminae. The beam elements had the cross-section
area equivalent to the area of the corresponding
shell elements on the adjacent laminae. The length
of the beam elements was equal to the height of
an individual lamina. It was observed that the
material properties of the laminae influence mainly the
in-plane modes of the structure, however the frictional
contact parameters have the biggest influence on
the out-of-plane modes. Compressional deformation
is also allowed, and is used to determine pressure
distribution between laminae in the first stage of the
linear contact model.

1.1 Introduction of Welds into Laminated Structure Model

In this section the effect of welds on the dynamical
behaviour of stator packet is identified and integrated
in the linear contact model.

Before the welding process the stator packets were
compressed with 2bar of pressure. The packets were
line welded in several places along the circumference,
Fig. 3. The number of welds varied depending on
the type of the stator packet. Assuming near and
far regions of the weld, the welding process can
be modelled with a spring-thermo-elasto-plastic bar
model [22]. A mathematical model for prediction of
the residual stresses is presented in Fig. 4. The weld
model is based on thermo-elasto-plastic bar, where
A represents the cross section area of the weld, E
the Youngs modulus and α as its coefficient of linear
thermal expansion, (Fig. 4). The Keq stands for the
equivalent stiffness of the spring, that represents the
part of the structure that is not affected by the heat
treatment (welding process). Near regions of the weld
are modelled using a thermo elasto plastic bar, which
is subjected to deformations due to the clamping force
and thermal expansion, during the welding process.
Ideal elasto plastic material is proposed. As the far
region is not in the heat affected region it can be
represented as a spring, that deforms elastically during
the clamping process.

The welding process is modelled in four stages: In
the first stage, the packet is compressed with the axial
force F . The compression results in a deformation u.
The weld that is represented with thermo-elasto-plastic
bar is then exposed to a temperature gradient ∆T ,
which heats the bar to its melting point. During the
heating process the bar expands, thus the clamping
force in the weld region reduces. It is assumed that
the elastic modulus and the yield strength of the stack
material reduces linearly with temperature [22]:

σy(T ) = σ0

(
1− T

Tm

)
, (1)

E(T ) = E0

(
1− T

Tm

)
, (2)

where E0 and σ0 represent the values of elastic
modulus and yield stress at room temperature, T
represents the temperature, which ranges from room to
melting temperature, and Tm the melting temperature
of the laminae material. The melting temperature of
1450 oC was proposed for all three stator packets. At
melting temperature the stresses in the weld are equal
to zero. In the third stage of the welding process the
weld cools from the solidification to the surrounding
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Fig. 2. Shell elements (laminae) connected via frictional contact elements (beam)

Fig. 3. Line welds on the stator packet.

a)

Thermo-elasto-
plastic bar Equivalent spring 

of the material
 in the 
far field

Keq

A, E, α 

b)

Fig. 4. Modelling of the welded laminated structure; a) schematic
representation of near and far field of the weld model, b) model of the

weld for prediction of residual stresses

temperature. The governing equation in the cooling
phase can be written as:

σ = (
keq

h
+E) ε . (3)

The keq represents the equivalent stiffness of the
far region of the packet, h the height of the packet,
E the Young modulus of the stator material and ε
the deformation in the stator stacking direction. The
equivalent stiffness of the far region of the packet keq
can be obtained using the following equation:

keq =
A E

h
. (4)

After the cooling process, the clamping force is
removed, thus the spring modelling the far region
expands and the axial load on the bar is applied.
Stresses in the weld can be higher than the yield stress
of the material. When the stresses reach the yield
stress, the governing equation changes to

σ =
keq

h
ε + σ0 . (5)

Considering the yield stress, it is possible to
iteratively calculate the deformation of the weld itself.
Resulting deformations can be applied to the nodes of
the laminated structure, that represent the end points
of the weld. Based on this deformations it is possible
to deduce the pressure distribution in the stator packet
due to the welding process (Fig. 5). The four stages of

Fig. 5. Pressure distribution between the laminae after the welding
process

the welding are schematically presented in Fig. 6.

2 VALIDATION OF THE DEVELOPED NUMERICAL MODEL

The developed numerical model was validated
by comparison of numerically and experimentally
obtained eigenfrequencies and modal shapes of three
stator packets. Experimental modal analysis (EMA)
was performed to obtain the eigenfrequencies and
modal shapes for three different stator packets, that
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Fig. 6. Modelling of the residual strains and stresses during welding

are presented in the Table 1 and shown in Fig. 7.
Experimentally obtained modal parameters were used
to deduce the material parameters, as well as to
validate the numerical model.

As the stator packets 1 and 2 had the same
lamina geometry, it was possible to deduce the
lamina material and contact parameters based on
experimentally identified modal parameters of stator
package 1. The identified parameters were then used
to predict the eigen frequencies and mode shapes for
the stator package 2. This enabled the validation of
the developed numerical model of laminated structures
with welds. The stator package 3 was included
into the analysis to demonstrate the influence of
asymmetrically distributed welds along the stator
perimeter.

Table 1. Stator packets under investigation

Packet nr.
Diameter

[mm]
Laminae

nr.
Lamina

thickness [mm]
Nr. of welds

1 140 70 0.5 8 (symmetric)
2 140 37 0.5 8 (symmetric)
3 108 55 0.5 7 (asymmetric)

2.1 Experimental Modal Analysis

In order to obtain the Accelerance (frequency
response function), the system was excited with an
electrodynamic shaker, with frequency range up to
6.4 kHz (Fig. 9). The excitation performed with the
electrodynamic shaker was necessary due to the high
levels of structural damping of the stator packets. The
response of the system was measured with a rowing
three axial accelerometer. The accelerometer was
positioned on two bands around the circumference of
each stator packet. The positions of the accelerometer
can be seen in Fig. 8.

The stator packets exhibit distinct in-plane and
out-of-plane modes. All modes occur in pairs and
are shifted along the symmetry axis. The selected

a)

b)

c)

Fig. 7. Stator packets under investigation; a) packet 1, b) packet 2, c)
packet 3

mode shapes are presented in Fig. 10. The measured
eigenfrequencies are presented in the Tables 3 to 5 and
are compared with the results of the numerical model.

2.2 Eigenfrequencies corresponding to In-Plane Modes

The eigenfrequencies of the in-plane modes are in
direct correlation with the material parameters of the
laminae. The in-plane modes namely have the same
values of modal parameters regardless the number of
laminae in the stator packet, contact parameter or the
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Fig. 8. Accelerometer positions during EMA

Fig. 9. Experimental setup

number and distribution of welds. Therefore it is
possible to validate numerical model in the fist stage
by comparing the eigenfrequencies corresponding to
in-plane modes.

The value of elastic modulus was 206 GPa for
all three laminae, and the density value of 7850
kg/m3 was used. In Fig. 11 the comparison between
experimentally and numerically obtained mode shape
for first in-plane mode is presented. Based on
error assessment it is evident that numerical model
accurately predicts the value of the eigenfrequencies
associated with in-plane modes.

2.3 Identification of Contact Parameters

The simulation procedure to deduce the contact
parameters for given lamina and consequently modal
parameters is presented in Fig. 12.

It is assumed in this paper that contact parameter
G f is independent of the pressure distribution within
stator package and is not influenced by the number
and position of welds. The contact parameter G f
is presumably a function of the frictional conditions
between the two laminae. The contact parameter
for stator packets 1 and 2 that were made from the
same laminae, were obtained based on measurement
of stator packet 1.

The identification of contact parameters relies
on experimentally identified modal parameters that

a) b)

c) d)

Fig. 10. Mode shapes; a) 1st in-plane mode, b) 3rd in-plane mode, c) 1st

out-of-plane mode, d) 2nd out-of-plane mode

a) b)

Fig. 11. Third mode shape (1st in-plane mode) for stator packet 1; a)
numerical model, a) EMA

correspond to out-of-plane modes. The optimization
function is defined as:

errG =
√

∑
i

(
fexp,i − fnum,i(G f )

)2
, (6)

where fexp,i is the i-th experimentally identified
eigenfrequency and fnum,i is the numerically identified
eigenfrequency. In the process of calculating the
contact parameter G f only the eigenfrequencies
corresponding to out-of-plane modes were used,
Eq. (6). The algorithm to obtain contact parameter G f
is schematically presented in Fig. 12.
Based on the geometry of the stator packet the finite
element model is generated. The packet is meshed and
populated with link/beam elements. The cross section
of each beam is calculated, based on the finite element
mesh of the laminae. In the first contact stage all of
the link elements have the same elastic modulus. By
knowing clamping force and the number as well as
the position of welds the pressure distribution between
the laminae is calculated (Fig. 5). In the next step
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the initial value for the material shear modulus G f is
selected. As the calculated nodal pressure between the
laminae is non-uniformly distributed it is necessary to
deduce the element shear modulus for each individual
beam element:

G f ,i(p) = G f
pi,beam

pmax
, (7)

where pi,beam is the nodal pressure at given node
i and pmax is the max. value of identified nodal
pressure within the lamina. The shear modulus G f ,i(p)
represents the friction forces by modeling beam shear
deformation between two nodes on adjacent lamina.
Based on the identified contact parameter the out-of
plane modes are numerically predicted and the cost
function errG is estimated according to Eq. (6). If the
cost function is not satisfied the optimization process
is repeated with new value of contact parameter G f .
Using this procedure it is possible to deduce the contact
parameter for the given type of lamina. Based on the

Fig. 12. Simulation algorithm

optimization algorithm presented in Fig. 12 the contact
parameter G f was identified for the stator package 1

Table 2. Identified contact parameter G f

Stator packet Contact parameter G f [GPa]
1, 2 0.3962
3 0.1744

and 3. The values are listed in Table 2. In this way
it was possible to validate the developed numerical
model of laminated structures with welds.

a) b)

Fig. 13. First mode shape (out of plane) for stator packet 1; a) numerical
model, a) EMA

Table 3. Comparison of numerically and experimentally obtained
eigenfrequencies for packet 1

Experiment Numerical model
Mode Mode plane Eigenfreq. [Hz] Eigenfreq. [Hz] Diff. [%]

1 out-of-plane 318.40 307.43 -3.45
2 out-of-plane 346.80 309.70 -11.98
3 in-plane 432.54 427.17 -1.24
4 in-plane 444.71 429.73 -3.37
5 out-of-plane 702.37 703.11 0.11
6 out-of-plane 892.97 837.03 -6.26

The experimentally obtained values were used as
a reference to estimate the relative error of numerical
model. It can be observed, that the difference
between eigenfrequencies for the out-of-plane modes
is not negligible. However the agreement can be
considered satisfactory as the laminated structures
are also subjected to great deal of uncertainties
during the manufacturing process. The generality
of proposed numerical model is demonstrated by
accurately predicting the eigenfrequencies for the
stator package 2. As the stator package 1 and
2 were made from the same type of lamina the
contact parameter G(1)

f was obtained based on updating
algorithm using stator package 1. Although the
stator package 2 had different number of laminae and
with this a different pressure distribution within stator
package the numerical model correctly predicted the
values of eigenfrequencies and corresponding modal
shapes. Thus, once the contact parameter G f is
identified for given lamina it is possible to predict
model parameters of stator packages that differ in
geometry, clamping pressure and the number and
position of welds.

Introduction of Welds into the Dynamic Model of Laminated Structures 7
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Table 4. Comparison of numerically and experimentally obtained
eigenfrequencies for packet 2

Experiment Numerical model
Mode Mode plane Eigenfreq. [Hz] Eigenfreq. [Hz] Diff. [%]

1 out-of-plane 195.37 219.98 12.55
2 out-of-plane 262.35 212.13 -15.71
3 in-plane 425.22 423.14 -0.49
4 in-plane 447.39 425.53 -4.89
5 out-of-plane 637.35 656.88 3.06
6 out-of-plane 1045.29 969.13 -7.29

Table 5. Comparison of numerically and experimentally obtained
eigenfrequencies for packet 3

Experiment Numerical model
Mode Mode plane Eigenfreq. [Hz] Eigenfreq. [Hz] Diff. [%]

1 out-of-plane 342.95 342.83 -0.04
2 out-of-plane 456.75 443.85 -2.82
3 in-plane 572.57 590.49 3.13
4 in-plane 613.26 656.87 7.11
5 out-of-plane 690.16 678.13 -1.74
6 out-of-plane 820.00 764.73 -6.74

Moreover the proper modeling of the weld and
the welding process itself can be demonstrated by
observing eigenfrequencies of stator package 3. As the
stator packets 1 and 2 have symmetrically distributed
welds around the perimeter the first and the second
mode shapes appear in pairs and shifted along the
symmetry axis. It can be observed that first two
eigenfrequencies are located closely together (Table
3). However this is not the case for the stator package
3 (Table 5), as the experimentally obtained first and
second eigenfrequencies are placed distinctly apart.
This is the result of unsymmetrically distributed welds
along the perimeter of the stack, and the developed
numerical model successfully predicted this behaviour.

3 CONCLUSION

In this paper a numerical model of laminated structures
is presented in order to predict the eigenfrequencies
and modal shapes of laminated stator packages. The
model uses shell and link/beam finite elements to
model the contact conditions between the laminae
that expedite the computation time of the modal
analysis, thus practically justifying the modelling
of each individual plate in the stator package.
The welds and the welding process are represented
using spring-thermo elasto-plastic bar model. In
order to identify contact parameters and to validate
the numerical model three different stator packages
were analyzed. The experimentally identified
eigenfrequencies and corresponding mode shapes were

used in the optimization process to extract the values of
contact parameters.

It has been shown that the in-plane modes are
in direct correlation with material properties of the
lamina. The out-of-plane modes are however governed
by the value of contact parameters. The generality
of proposed numerical model is demonstrated with
the stator package 2 where the contact parameters
were identified based on stator package 1. Although
the stator package 2 had different number of laminae
comparing to to stator package 1 the numerical model
correctly predicted the values of eigenfrequencies and
corresponding modal shapes.
Moreover the proper modeling of the weld and the
welding process itself is demonstrated on the stator
package 3. In this case the experimentally obtained
first and second eigenfrequencies are located distinctly
apart which is the result of unsymmetrically distributed
welds along the perimeter of the stack. In order to
successfully predict this behaviour it is necessary to
model the physical connection at the weld location as
well as the influence of the welding process on the
pressure distribution within the stator package.
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Table 4. Comparison of numerically and experimentally obtained
eigenfrequencies for packet 2

Experiment Numerical model
Mode Mode plane Eigenfreq. [Hz] Eigenfreq. [Hz] Diff. [%]

1 out-of-plane 195.37 219.98 12.55
2 out-of-plane 262.35 212.13 -15.71
3 in-plane 425.22 423.14 -0.49
4 in-plane 447.39 425.53 -4.89
5 out-of-plane 637.35 656.88 3.06
6 out-of-plane 1045.29 969.13 -7.29

Table 5. Comparison of numerically and experimentally obtained
eigenfrequencies for packet 3

Experiment Numerical model
Mode Mode plane Eigenfreq. [Hz] Eigenfreq. [Hz] Diff. [%]

1 out-of-plane 342.95 342.83 -0.04
2 out-of-plane 456.75 443.85 -2.82
3 in-plane 572.57 590.49 3.13
4 in-plane 613.26 656.87 7.11
5 out-of-plane 690.16 678.13 -1.74
6 out-of-plane 820.00 764.73 -6.74

Moreover the proper modeling of the weld and
the welding process itself can be demonstrated by
observing eigenfrequencies of stator package 3. As the
stator packets 1 and 2 have symmetrically distributed
welds around the perimeter the first and the second
mode shapes appear in pairs and shifted along the
symmetry axis. It can be observed that first two
eigenfrequencies are located closely together (Table
3). However this is not the case for the stator package
3 (Table 5), as the experimentally obtained first and
second eigenfrequencies are placed distinctly apart.
This is the result of unsymmetrically distributed welds
along the perimeter of the stack, and the developed
numerical model successfully predicted this behaviour.

3 CONCLUSION

In this paper a numerical model of laminated structures
is presented in order to predict the eigenfrequencies
and modal shapes of laminated stator packages. The
model uses shell and link/beam finite elements to
model the contact conditions between the laminae
that expedite the computation time of the modal
analysis, thus practically justifying the modelling
of each individual plate in the stator package.
The welds and the welding process are represented
using spring-thermo elasto-plastic bar model. In
order to identify contact parameters and to validate
the numerical model three different stator packages
were analyzed. The experimentally identified
eigenfrequencies and corresponding mode shapes were

used in the optimization process to extract the values of
contact parameters.

It has been shown that the in-plane modes are
in direct correlation with material properties of the
lamina. The out-of-plane modes are however governed
by the value of contact parameters. The generality
of proposed numerical model is demonstrated with
the stator package 2 where the contact parameters
were identified based on stator package 1. Although
the stator package 2 had different number of laminae
comparing to to stator package 1 the numerical model
correctly predicted the values of eigenfrequencies and
corresponding modal shapes.
Moreover the proper modeling of the weld and the
welding process itself is demonstrated on the stator
package 3. In this case the experimentally obtained
first and second eigenfrequencies are located distinctly
apart which is the result of unsymmetrically distributed
welds along the perimeter of the stack. In order to
successfully predict this behaviour it is necessary to
model the physical connection at the weld location as
well as the influence of the welding process on the
pressure distribution within the stator package.
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